
Part I: Web Structure Mining
Chapter 2: Hyperlink Based Ranking

• Social Network Analysis

• PageRank

• Authorities and Hubs
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• Authorities and Hubs

• Link Based Similarity Search

• Enhanced Techniques for Page Ranking



Social Networks

• Directed graph with weights assigned to the edges

• Nodes represent documents and edges – citations from one 
document to other documents. 
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• Prestige can be associated with the number of input edges to a 
node (in-degree).

• Prestige has a recursive nature – it depends on the authority 
(or again, the prestige) of citations.



Prestige Score

• Adjacency matrix

if document u cites document v

otherwise
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• Prestige score
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Computing Prestige Score

• Solving matrix equation

• Eigen decomposition

PAP T=′
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• Eigen decomposition

Eigenvector P

Eigenvalue

PAP T=λ

λ



Social Networks Example
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Computing Prestige by Power Iteration

•
• Loop:

0PP ←

PQ ←
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• While 

QAP T←

P
P

P
1←

ε>−QP



PageRank

• “Random web surfer” keeps clicking on hyperlinks at random 
with uniform probability

• Implements random walk on the web graph 

• If page u links to      web pages and v is one of them then:uN
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• If page u links to      web pages and v is one of them then:

– Once the surfer is at page u the probability of visiting page 
v will be 

– The amount of prestige that page v receives from page u is

of the prestige of u

uN

uN1

uN1



Page Rank Propagation

Propagation of page rank
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Calculation of PageRank
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Rank Sink and Power Iteration

  
 Loop:

0RR ←
RQ ←

QAR T←

Rank Sink
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PageRank Discussion

• The rank vectorR defines the probability distribution of a  random 
walk on the Web graph.

• With some low probability the surfer jumps to a random page 
chosen according to distribution E. 

• E is usually chosen as a uniform vector with a small norm.
• If the norm of E is larger the surfer jumps to a random page more 
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• If the norm of E is larger the surfer jumps to a random page more 
often. 

• A larger norm of E means less contribution of the link structure to 
the final PageRank score (the distribution of R gets closer to E).

• The rank source E allows PageRank to be adjusted for  customized 
ranking or to avoid commercial manipulation. 

• Other PageRank applications include estimating Web traffic, 
optimal crawling and web page navigation. 



Authorities and Hubs

• There are problems with using only the in-degree based 
authority (e.g. some links have noting to do with authority).

• Neither content-based relevance nor link-based authority can do 
the job alone, rather a good balance between the two is needed.

• Hyperlink Induced Topic Search (HITS) combines content-
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• Hyperlink Induced Topic Search (HITS) combines content-
based relevance with link-based authority ranking.

• Focuses on relevant pages first and then computes authority.
• Works with much smaller and query dependent part of the Web 

graph.
• Takes into account hub pages (pages that point to multiple 

relevant authoritative pages).



Hyperlink Induced Topic Search (HITS)

• Given a queryq a standard IR system finds a small set of
relevant web pages called aroot set .

• The root set is expanded to abase set by adding pages that
point to andarepointedto by pagesfrom therootset.

qR

qS
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point to andarepointedto by pagesfrom therootset.

• The hyperlink structure of the base set is analyzed to
find authorities andhubs.



Finding Authorities and Hubs

qSE(u,v) – adjacency matrix of the base set
– authority vector
– hub vector

k – tuned parameter
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Link-Based Similarity Search

• Find k pages pointing to page u and use them to form the root set

• Using      find the base set

uR

uS
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• Compute authorities and hubs in 

• Report the highest ranking authorities and hubs as similar pages to u.

uS



Enhanced Page Ranking

• Topic Generalization (expansion of a set of pages by a number of links)
– Expansion by one link is used by HITS
– Expansion by more than one link usually leads to topic drift

• Nepotistic links (densely linked pages located on a single site or related sites)
– Assign weights of to inlinks from pages belonging to a single site

• Outliers (relevant pages retrieved by keyword search, but far from the central  
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• Outliers (relevant pages retrieved by keyword search, but far from the central  
topic of the query)

• Eliminating outliers by clustering
– Create vector space representation for the pages from the root set.
– Find the centroid of the root set (the page that minimizes its cosine 

similarity to all pages in the set)
– When expanding the root set discard pages that are too far from the centroid

page.


